

Datos preliminares sobre el origen del Au y del S de los yacimientos de Au orogénico del Distrito de Llamas de Cabrera (Macizo Ibérico)

Fernando Gómez-Fernández (1,3*), J.K. Cunningham (2), Caldevilla, P. (1,3), Herrero-Antonio Hernández (3), Andy D. Beard. (2)

(1) Área Prospección e Investigación Minera, E.S.T.I. Minas, Universidad de León, Avda. Campus de Vegazana s/n, 24071 León, (Spain)

(2) Dept. of Earth and Planetary Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX (UK)

(3) Grupo de Investigación INGEOMAT, E.S.T.I. Minas, Universidad de León, Avda. Campus de Vegazana s/n, 24071 León, (Spain)

* Corresponding Author: <u>f.gomez@unileon.es</u>

Palabras Clave: Oro, Azufre, Orogénico, Pizarra | Key Words: Gold, Sulphur, Orogenic, Slate

MARCO GEOLÓGICO

El distrito minero de oro Llamas de Cabrera, explotado durante el imperio romano y redescubierto en 2003, se localiza en el flanco norte del Sinclinal de Truchas (Zona Centroibérica, Macizo Varisco Ibérico). Los yacimientos de oro se encuentran en venas de cuarzo post-tectónico encajadas en las capas superiores de la Cuarcita Armoricana y, ocasionalmente en pizarras de la Fm. Luarca (Matte, 1968). Los fluidos mineralizadores fueron equilibrados en gran medida con litologías metamórficas a temperaturas medias-altas (Gómez-Fernández et al., 2012), previamente a su movilización para dar lugar a los yacimientos.

OBJETIVOS E HIPÓTESIS DE PARTIDA

Este trabajo pretende determinar el origen del Au y del S de los yacimientos de Au orogénico del sector. El Au habría sido introducido en la cuenca sedimentaria contemporáneamente a la deposición de la Fm. Luarca, concentrándose en piritas biogénicas framboidales, en medios sedimentarios anóxicos a euxínicos. Durante la diagénesis avanzada y el metamorfismo temprano, la pirita habría recristalizado para formar piritas sub a euhedrales de grano más grueso, liberando Au, As, S y otros metales a los fluidos metamórficos/hidrotermales (Large et al., 2011). Dicho Au habría precipitado posteriormente en zonas extensionales.

MÉTODO DE TRABAJO

Las láminas y probetas pulidas de muestras de pizarras

de la Formación Luarca fueron estudiadas mediante: a) un microscopio electrónico de barrido JEOL JSM-6480, equipado con detector Oxford D6679 EDS y, b) una microsonda electrónica CAMEBAX SX-100. Así mismo, se hicieron 13 análisis de isótopos estables de azufre mediante técnicas estándar (Robinson and Kusakabe, 1975), en piritas. Para ello, se utilizaron los estándares internacionales NBS-123 o NBS-127. Los datos de ³⁴S se expresaron en ‰ V-CDT. δ^{34} S de las piritas framboidales, descritas en el apartado siguiente (tipos I y II), no fueron analizadas debido a su pequeño tamaño.

RESULTADOS

Se distinguieron cuatro tipos de pirita (Figura 1) Py-I: framboidales, de origen biogénico, formadas en medios sedimentarios y condiciones anóxicas a euxínicas; Py-II: framboidal evolucionada, producida por sobrecrecimiento de cristales sobre los framboides (Wei et al., 2012), con coalescencia entre cristales y formas subhedrales; Py-III: macroscópica en agregados porfídicos junto a carbonatos, cuarzo y otros sulfuros alargada paralelamente a S₁ y bordeada por esta; Py-IV: macroscópicas euhedrales, a menudo cúbicas.

Figura 1. BSE mostrando diferentes tipos de pirita en pizarras negras.

Los resultados obtenidos en la EMPA, se sintetizan en Tabla 1. Los contenidos en Au, As, Te, Hg, Sb, Mo y Zn son significativamente más altos en Py-I que en los otros tipos. Los contenidos en Ni, Cu y Ag no siguen un patrón claro.

Tabla 1. Contenido medio de metales en piritas en pizarras (resultado EMPA) de la Fm. Luarca.

Mineral		Tipo de pirita				
		Ι	II	III	IV	
Nº de análisis		54	15	31	48	
As	ppm	1999	1185	581	707	
Ni	ppm	1112	798	2345	272	
Cu	ppm	236	523	241	105	
Zn	ppm	650	22	17	12	
Mo	ppm	144	21	31	27	
Ag	ppm	170	189	166	163	
Sb	ppm	53	5	21	28	
Те	ppm	50	22	22	21	
Au	ppm	217	54	40	44	
Hg	ppm	208	66	94	80	
S	(%)	53.45	53.46	53.77	53.39	
Fe	(%)	45.39	45.68	45.63	46.19	
Total	(%)	99.55	99.43	99.75	99.73	

Los análisis de δ^{34} S se muestran en la Tabla 2.

Tabla 2. $\delta^{34}S_{CDT}$ en piritas de los tipos III y IV.

Roca	Muestra	Forma	Tipo Py	$^{34}S_{CDT}$
Pizarra	11	Porfiroide	III	13,6
Pizarra	298	Porfiroide	III	20,8
Pizarra	298	Cubo	IV	10,7
Pizarra	9	Agregado	IV	20,5
Pizarra	7G03	Cubo	IV	10,1
Pizarra	7G36	Cubo	IV	16,6
Pizarra	43	Núcleo Cubo	IV	28,4
Pizarra	43	Borde cubo	IV	28,1
Pizarra	44	Cubo	IV	8,3
Pizarra	M23	Núcleo cubo	IV	2,1
Pizarra	M23	Borde cubo	IV	4,7

DISCUSIÓN Y CONCLUSIONES

La distribución de metales en los distintos tipos de pirita

La distribución isotópica δ^{34} S de las piritas más evolucionadas (III y IV) es conforme con la coexistencia de dos fuentes de S: a) SO₄ marino, con S pesado (Huston, 1999), que habría sido reducido a H₂S en condiciones anóxicas a euxínicas y, b) S magmático, mucho más ligero, relacionado con la deposición de vulcanitas. El sulfato marino habría sido la principal fuente del S involucrado en estos procesos.

AGRADECIMIENTOS

Proyecto 0284_ESMIMET_3_E (INTERREG V-A Programa de Cooperación España-Portugal, 2014-20) y Proyecto LE167G18 (Junta de Castilla y León, España).

REFERENCIAS

- Gómez-Fernández, F., Vindel, E., Martín-Crespo, T., Sánchez, V., González Clavijo, E., Matías, R., (2012). The Llamas de Cabrera gold district, a new discovery in the Variscan basement of northwest Spain: a fluid inclusion and stable isotope study. Ore Geol. Rev., **46**, 68-82.
- Huston DL (1999) Stable isotopes and their significance for understanding the genesis of volcanic-hosted massive sulfide deposits: A review. Rev Econ Geol., **10**, 151–180.
- Large, R.R., Bull, S.W., and Maslennikov, V., (2011). A carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 106, p. 331–358, doi:10.2113/econgeo.106.3.331.
- Matte, Ph. (1968). La structure de la virgation hercynienne de Galice (Espagne). Géologie Alpine, t. 44, 1-127, 128 fig., 3 láms., Grenoble.
- Merinero R., Cárdenes, V. (2008). Theoretical growth of framboidal and sunflower pyrite using the R-package frambgrowth. Mineral Petrol., 112:577 589. https://doi.org/10.1007/s00710-017-0535-x
- Robinson, B., Kusakabe, M., 1975. Quantitative preparation of sulphur dioxide for 34S/32S analyses from sulphides by combustion with cuprous oxide. Anal. Chem. 47, 1179–1181.
- Wei H, Chen D, Wang J, Yu H, Tucker ME (2012) Organic accumulation in the lower Chihsia formation (Middle Permian) of South China: constraints from pyrite morphology and multiple geochemical proxies. Palaeogeogr Palaeoclimatol Palaeoecol **353**, 73–86